Goal: Derive average fractional occupancy assuming a non-cooperative
model. Then derive the fractional occupancy assuming a simple co-
operative model.

If we set up the hemoglobin so that we can exchange particles between the
system and reservoir, the Boltzmann Factor becomes the Gibbs Factor.
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Where FE is the energy of the system, defined by:
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N is the number of particles in the state, and p is the chemical potential.
Then we can use the Grand Partition Function:
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Which implies the probability of the state denoted by P(s) is:
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Then the average fractional occupancy can be defined as follows:
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The binding sites of hemoglobin has the following states, if we assume a non-
cooperative model:

H # Binding Sites ‘ # Configurations | Configuration Notation H

0 1 E

1 4 01,04,03,04

2 6 11,15, 15, Ty, Ts, T
3 4 H,,Hy,Hs, Hy
4 1 F




If we assume a non-cooperative model, then we only need to look at the states
individually using the Grand Partition Function Z (split on two lines for read-
ability):
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However, we know the values of E(s) and Nj.
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This means if we call the energy of the system e, then State E(T) = 2¢, for
example. So we can simplify Z to:
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Since we're given that:
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Note that this equation only holds for the non-cooperative model for hemoglobin
(Assuming J = 0). If we assume a simple cooperative model, our energy equa-
tion changes slightly. This simple model only takes into account cooperation

between pairs.
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If we assign F(s) again as we did prior, then instead of having simply de for
some §, we would have some J term mixed in. We can solve for these using
logic:
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This occurs since for States E and O, there are not two states occupied to
have cooperation. Then we have 1 cooperation pair for two binding sites, 3
cooperation pairs for three binding sites, and 6 cooperation pairs for four binding
sites.

Once again, we can use the Grand Partition Function.
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Once again, we can use the equation for (V) and solve:
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Note: Although not shown here, a similar logic follows for cooperation between
three and four binding sites. Also like earlier, the § cancels out.

To start modeling, we can adopt parameters in the form of j = e~ #/ and
x = CePlE—10) where C is a parameter representing a ratio of concentrations,
thus changing p to pp. This has no effect on the modeling.

Az + 12275 4 122353 + 4t 5O
1+ 4x + 6225 + 42353 4 2446
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This is the equation we will use to model fit. When working with the non-
cooperative model, we will assume j =1 (i.e. J =0).



