
Goal: Derive average fractional occupancy assuming a non-cooperative
model. Then derive the fractional occupancy assuming a simple co-
operative model.

If we set up the hemoglobin so that we can exchange particles between the
system and reservoir, the Boltzmann Factor becomes the Gibbs Factor.

e−β(E(s)−µNs); β =
1

kT

Where E is the energy of the system, defined by:

E = ε

4∑
α=1

σα

Ns is the number of particles in the state, and µ is the chemical potential.
Then we can use the Grand Partition Function:

Z =
∑
s

e−β(E(s)−µNs)

Which implies the probability of the state denoted by P (s) is:

P (s) =
1

Z
e−β(E(s)−µNs)

Then the average fractional occupancy can be defined as follows:
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So:
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The binding sites of hemoglobin has the following states, if we assume a non-
cooperative model:

# Binding Sites # Configurations Configuration Notation

0 1 E
1 4 O1, O2, O3, O4

2 6 T1, T2, T3, T4, T5, T6

3 4 H1, H2, H3, H4

4 1 F
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If we assume a non-cooperative model, then we only need to look at the states
individually using the Grand Partition Function Z (split on two lines for read-
ability):

Z =
∑
s

e−β(E(s)−µNs)

Z = e−β(E(E)−µNE) +

4∑
i=1

e
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E(Oi)−µNOi

)
+

6∑
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e
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(
E(Ti)−µNTi

)

+

4∑
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e
−β

(
E(Hi)−µNHi

)
+ e−β(E(F)−µNF )

However, we know the values of E(s) and Ns.

State E(s) Ns

E 0 0
O 1 1
T 2 2
H 3 3
F 4 4

This means if we call the energy of the system ε, then State E(T ) = 2ε, for
example. So we can simplify Z to:

Z = 1 + 4e−β(ε−µ) + 6e−2β(ε−µ) + 4e−3β(ε−µ) + e−4β(ε−µ)

∂Z
∂µ

= β[4e−β(ε−µ) + 12e−2β(ε−µ) + 12e−3β(ε−µ) + 4e−4β(ε−µ)]

Since we’re given that:

⟨N⟩ = 1

β

∂

∂µ
lnZ ⇒ ⟨N⟩ = 1

β
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So:

⟨N⟩ = 1

β

β[4e−β(ε−µ) + 12e−2β(ε−µ) + 12e−3β(ε−µ) + 4e−4β(ε−µ)]

1 + 4e−β(ε−µ) + 6e−2β(ε−µ) + 4e−3β(ε−µ) + e−4β(ε−µ)

⟨N⟩ = 4e−β(ε−µ) + 12e−2β(ε−µ) + 12e−3β(ε−µ) + 4e−4β(ε−µ)

1 + 4e−β(ε−µ) + 6e−2β(ε−µ) + 4e−3β(ε−µ) + e−4β(ε−µ)

Note that this equation only holds for the non-cooperative model for hemoglobin
(Assuming J = 0). If we assume a simple cooperative model, our energy equa-
tion changes slightly. This simple model only takes into account cooperation
between pairs.

E = ε

4∑
α=1

σα +
J
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If we assign E(s) again as we did prior, then instead of having simply δε for
some δ, we would have some J term mixed in. We can solve for these using
logic:

State ε J E(s)

E 0 0 0
O 1 0 ε
T 2 1 2ε+ J
H 3 3 3ε+ 3J
F 4 6 4ε+ 6J

This occurs since for States E and O, there are not two states occupied to
have cooperation. Then we have 1 cooperation pair for two binding sites, 3
cooperation pairs for three binding sites, and 6 cooperation pairs for four binding
sites.
Once again, we can use the Grand Partition Function.

Z = 1 + 4e−β(ε−µ) + 6e−β(2ε−2µ+J) + 4e−β(3ε−3µ+3J) + e−β(4ε−4µ+6J)

Z = 1 + 4e−β(ε−µ) + 6e−2β(ε−µ)−βJ + 4e−3β(ε−µ)−3βJ + e−4β(ε−µ)−6βJ

Once again, we can use the equation for ⟨N⟩ and solve:

⟨N⟩ = 1

β

1

Z
∂Z
∂µ

⟨N⟩ = 4e−β(ε−µ) + 12e−2β(ε−µ)−βJ + 12e−3β(ε−µ)−3βJ + 4e−4β(ε−µ)−6βJ

1 + 4e−β(ε−µ) + 6e−2β(ε−µ)−βJ + 4e−3β(ε−µ)−3βJ + e−4β(ε−µ)−6βJ

Note: Although not shown here, a similar logic follows for cooperation between
three and four binding sites. Also like earlier, the β cancels out.

To start modeling, we can adopt parameters in the form of j = e−βJ and
x = Ce−β(ε−µ0), where C is a parameter representing a ratio of concentrations,
thus changing µ to µ0. This has no effect on the modeling.

⟨N⟩ = 4x+ 12x2j + 12x3j3 + 4x4j6

1 + 4x+ 6x2j + 4x3j3 + x4j6

This is the equation we will use to model fit. When working with the non-
cooperative model, we will assume j = 1 (i.e. J = 0).
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